Direct and Inverse Scattering for the Matrix Schrödinger Equation
نویسندگان
چکیده
This book presents a complete solution of the direct and inverse scattering problems for matrix Schrödinger equations on half line with general boundary conditions. is fundamental problem important to current research in applied mathematics mathematical physics.
منابع مشابه
ṕ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗
In this paper I prove a L − L estimate for the solutions of the one–dimensional Schrödinger equation with a potential in Lγ where in the generic case γ > 3/2 and in the exceptional case (i.e. when there is a half–bound state of zero energy) γ > 5/2. I use this estimate to construct the scattering operator for the nonlinear Schrödinger equation with a potential. I prove moreover, that the low–en...
متن کاملOn the Direct and Inverse Scattering for the Matrix Schr Odinger Equation on the Line
The one-dimensional matrix Schrr odinger equation is considered when the matrix potential is selfadjoint and satisses certain general restrictions. The small-energy asymptotics of the scattering solutions and scattering coeecients are derived. The continuity of the scattering coeecients is established. The unique solvability of the corresponding matrix Marchenko integral equations is proved. Sh...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Inverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied mathematical sciences
سال: 2021
ISSN: ['1314-7552', '1312-885X']
DOI: https://doi.org/10.1007/978-3-030-38431-9